CARBON EMISSIONS NEED A NERF: REDUCING PC GAMING'S IMPACT ON THE CLIMATE

Table of Contents

3 Team Introduction 25 MFC

- 4 Problem Statement 26 Development Tools
- 5 Background 27 Algorithm Flow
- 10 Current Process Flow 28 Database Schema
- 13 Solution Statement 29 GUI Mockups
- 14 Customers/End Users 32 Competition
- 15 Solution Characteristics 34 Risks
- 17 Solution Process Flow 37 Conclusion
- 19 Gamification 38 References
- 22 GUI Sitemap 40 Appendix
- 23 Tech Stack

Meet Our Team

Bittu Ahlawat Mentor

Ashley Borum

Hawar Hawarry

Zach Schumacher

Jeremiah Shelor

Bradley Sherwood

Manuel Tan

Problem Statement

Motivation:

Climate change presents a range of risks to human life and the environment. Avoiding the worst effects of climate change will require urgent action to reduce reliance on energy generated from fossil fuels.

Problem:

The world is already experiencing significant disruptions due to global temperature rise, yet there exists a disconnect between high-performance personal computing trends and the realities of decarbonizing the electric grid.

Problem Background: The Big Picture

Climate Change

We have seen a 1.1° C rise in temperature since 1880 and projected a 3.2° C increase by the end of this century.

Natural Disasters

There has been a 4 inch rise in global sea levels since 1993. We are likely to see higher rates of flooding and wildfires.

Actions

The world is falling short of the emissions reductions needed to avoid the most severe impacts from global warming.

Financial Strain

The World Economic Forum ranked climate change as the biggest risk to the economy in 2020.

Problem Background: How does this affect us?

Food Shortages

With the continuous increase in temperature and change in weather, there would most likely have a decrease in harvest due to flooding.

Poverty

People are expected to live in poverty due to floods sweeping away homes, and livelihoods.

The change in temperature would also affect the way people work.

Health Risks

Over 90% of people breathe unhealthy levels of air pollution, largely resulting from burning fossil fuels driving climate change. Heat strokes.

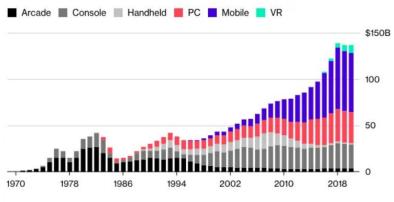
Animal Population

The world is currently suffering from coral bleaching where fish are losing their habitats and sources of food.

Sources: United Nations

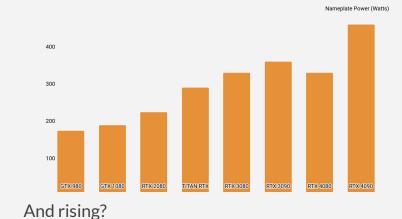
Problem Background: Gaming and the Climate

A typical gaming computer consumes an estimated 1,400 kWh/year and accounts for around 1,700 pounds of CO₂ annually. [1]


Gaming consumes 34 TWh/year in the U.S., emitting the same CO_2 as 85 million refrigerators, or more than 5 million cars. [2]

Research suggests energy use could be significantly reduced without negatively affecting user experience.
[2]

A growing problem...


PC gaming's increased market share¹

Source: Pelham Smithers

GPU power demands keep rising.

High-end NVIDIA GPU power draw, recent generations:²

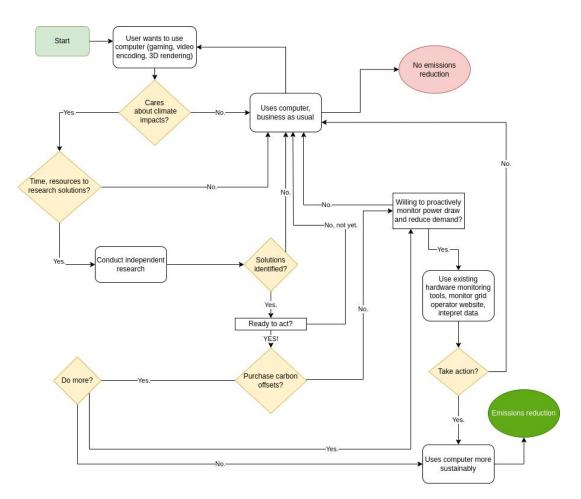
AMD

AMD recently predicted GPU power consumption of 600-700W by 2025.3

[1] Game Developer, January, 2019 [2] TechPowerUp.com [3] TechSpot, July 13, 2022

Problem Background: PC Stats

- To put into perspective how much power someone with a gaming PC might use while running a resource intensive game or program, here are some wattage statistics while playing a resource-intensive video game:
- CPU: AMD Ryzen 5 5600X
- GPU: NVIDIA GeForce RTX 3070 Ti


• Game: Escape from Tarkov

Main Menu:						Game	eplay:		
	Current	Min	Max	Avg		Current	Min	Max	Avg
CPU Package Power	37.282 W	35.136 W	45.800 W	40.294 W	CPU Package Power	63.294 W	35.136 W	72.390 W	46.505 W
F GPU Power	105.166 W	91.369 W	123.825 W	101.413 W	F GPU Power	217.262 W	50.351 W	288.331 W	159.049 W

This also demonstrates how the power consumption of a PC can vary drastically depending on what software is currently in use and the actions of the user. The gameplay wattage is equivalent to:

- Two 65" LED TVs [2]
- Six fluorescent lamps [2]
- One fridge/freezer combination [2]
- Eight DVD players [2]

Current Process Flow

Our Solution

Eco-feedback software that leverages gamification to teach PC users about the carbon intensity of their computing habits and promote more sustainable behaviors.

Customers and End-Users

End-Users

- PC gamers
- Parents/guardians of PC gamers
- Content-creators (Video, 3D rendering, streaming)
- Any PC power user engaged in demanding workflows

Customers

- Advocacy groups
- Gaming companies with public commitments on the environment
- Regulators

Solution Characteristics

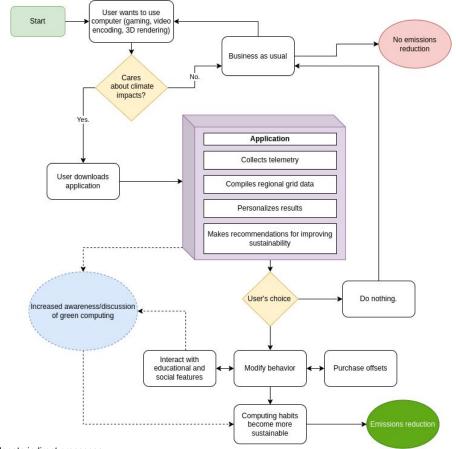
The software will:

- Continuously sample PC wattage
- Monitor hourly regional electricity generation by fuel type
- Produce a personalized estimate of a device's carbon-intensity
- Use gamification to challenge users to reduce CO₂ emissions
 - Achievable daily targets
 - Earnable rewards to incentivize progress
- Predict periods of high renewables availability
- Make recommendations on optimal time frames to carry out demanding tasks
- Estimate carbon-intensity of individual computing tasks

Solution Characteristics

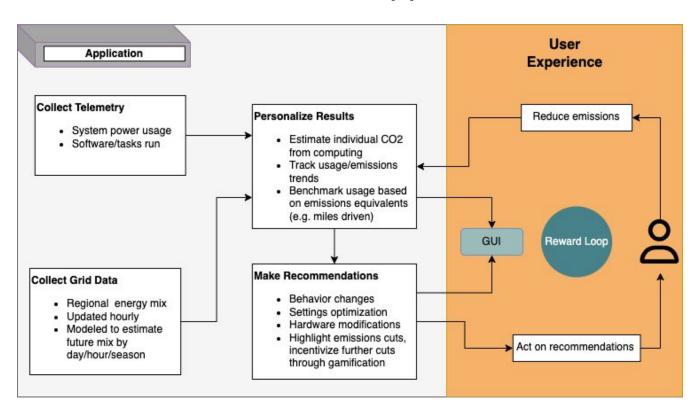
The software will (cont.):

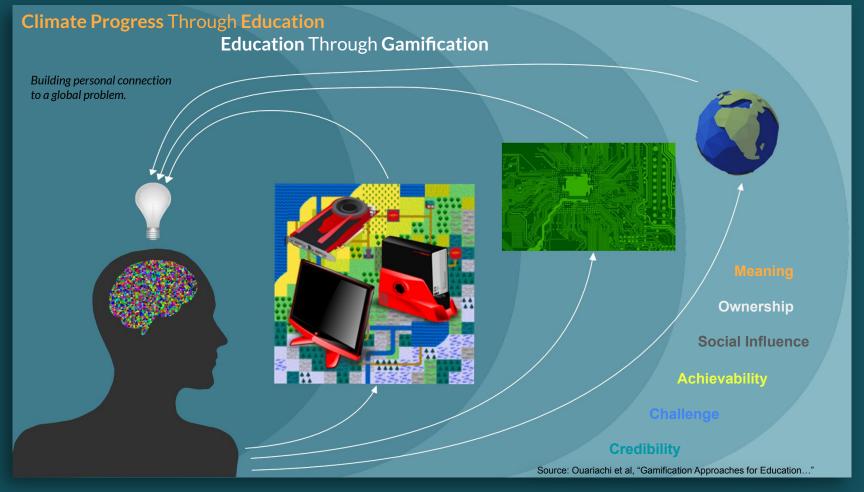
- Provide both climate- and cost-focused parental monitoring features through a companion application
- Collect anonymized data on hardware and usage:
 - Drive research and policymaking
 - Push for greater efficiency in gaming hardware by publishing data


Solution Characteristics

The software will NOT:

- Focus on reducing general household energy costs or make energy efficiency recommendations concerning non-computing devices
- Require a dedicated smart device to monitor electricity usage, such as a smart plug




Solution Process Flow

^{*} Dotted lines denote indirect processes.

Solution Process Flow: Application Breakout

Gamification: Proof of Concept

Goal: Foster emotional investment in real-world outcomes through simulation and personalization

A personalized 'virtual ecosystem'

Behavioral change rewards virtual currency used to:

- Unlock new plants, animals, insects by purchasing in a virtual storefront
- 'Terraform' the ecosystem, creating new habitat for unlocked species
- Invest in maintaining, cleaning ecosystem
- Invest in recovery, remediation
- Users can share or visit one another's ecosystems

Personal ecosystem has its own greenhouse gas parts-per-million (GHG PPM) stat linked to user behavior:

- Periods of high-CO₂
 emissions intensity raise
 GHG PPM
- High GHG PPM destabilizes ecosystem, potential for unlocked species to 'die out' via permadeath system comparable to virtual pet games
- Nudges to reduce CO₂ intensity coupled with specific warnings for personal ecosystem

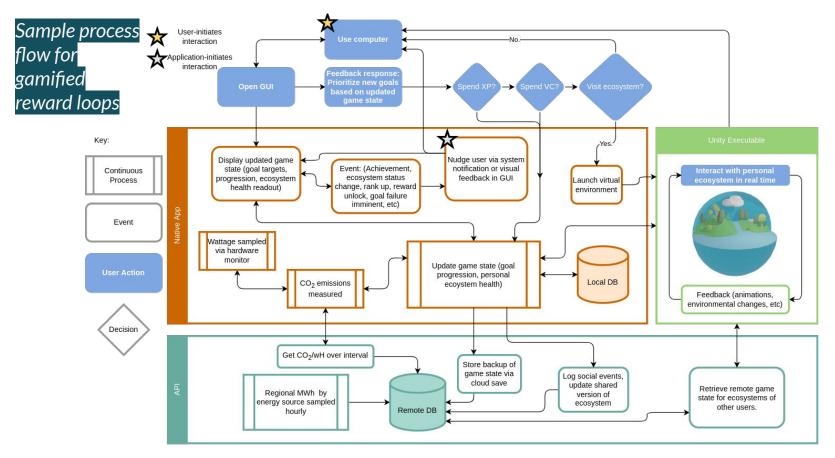
Gamification: Proof of Concept

Goal: Promote behavioral change through time-bound progression system

Achievement/bounty system:

- Tracked by rarity ("only X% of players have this achievement")
- Reward XP, virtual currency, badges
- Reward completion streaks for daily goals
 - 3-day, 5-day, 7-day,14-day, 30-day
- Possible daily achievements:

XP gains unlock new items via non-linear progression tree:



Potential for seasonal refresh, a la the battle pass model used by many live-service games.

Lifetime reputation/rank:

- Comparable to Xbox Gamerscore
- Measure of long-term engagement
- Tracked via leaderboards to foster healthy competition
- Users that achieve exclusive tiers of engagement rewarded with "ambassador" status
- Ambassador profiles (including personal ecosystem) given visibility on application homepage

Gamification: Proof of Concept

Tech Stack: Native Desktop + Companion Mobile Applications

Languages/Frameworks:

- C# (backend)
- .NET MAUI¹
- Unity game engine

Database (Local):

MongoDB (NoSQL)

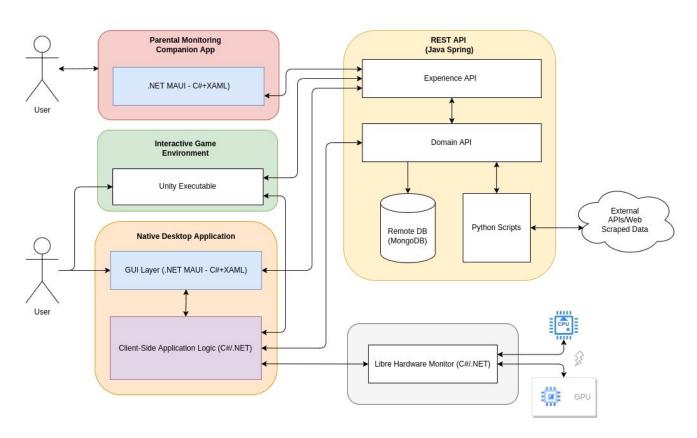
Tech Stack: REST API/Remote Database

Languages:

- Java
- Python (web scraping, data manipulation)

Framework:

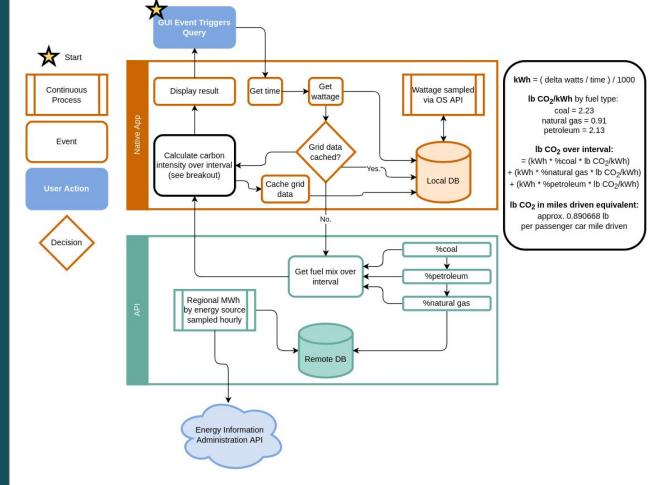
Spring


Database:

• MongoDB (NoSQL)

Major Functional Component Diagram

Development Tools


Software:

- Version Control: Git
- Repository: GitHub
- IDE: Visual Studio, VS Code
- Build/configuration management: .NET
- Unit Testing:
 - o xUnit (C#/.NET)
 - pytest for Python
- Documentation: XML, Pydoc, Markdown
 - Maintained/collected in GitHub Pages
- REST API Testing: Postman
- Issue Tracking: GitHub

Hardware:

 Windows and Linux machines for testing power monitoring functionality

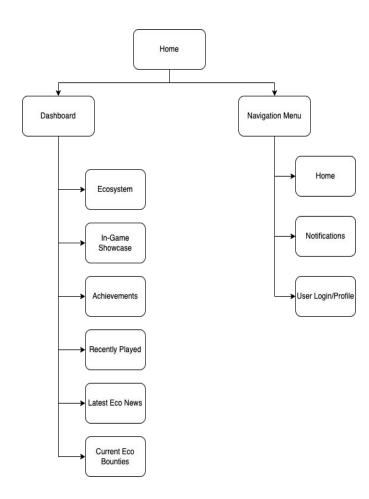
Algorithm Flow: Carbon Intensity Calculation

Database Design: Grid Monitoring

```
"regions": [
        "region_id": "MIDA",
        "region name": "Mid-Atlantic",
        "zip-codes":
            ["20142", "20479", "90210", "..."]
        "region id": "MIDW",
        "region name": "Midwest",
        "zip-codes":
            ["20142", "20479", "90210", "..."]
        "region id": "NW",
        "region name": "Northwest",
        "zip-codes":
            ["20142", "20479", "90210", "..."]
        "region_id": "CAL",
        "region name": "California",
        "zip-codes":
            ["20142", "20479", "90210", "..."]
        "region_id": "CENT",
        "region_name": "Central",
        "zip-codes":
            ["20142", "20479", "90210", "..."]
```

Evergreen region information for assessing user's location.

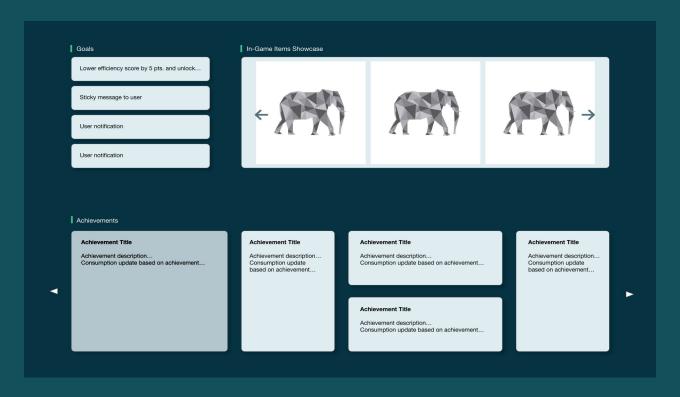
Generation by resource type banked by day for each region.

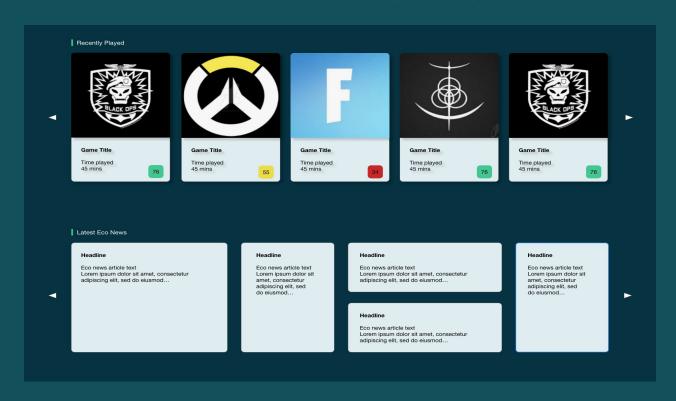

```
"region id": "MIDA"
"date": "2022-11-30",
"data": [
        "resource": "Wind".
        "megawatt-hours": [
                "Timestamp (Hour Ending)": "11\/23\/2022 12 a.m. EST",
                "value": 51040
                "Timestamp (Hour Ending)":"11\/23\/2022 1 a.m. EST",
                "value": 55082
                "comment": "time series continues in this fashion"
        "megawatt-hours": [
                "Timestamp (Hour Ending)": "11\/23\/2022 12 a.m. EST",
                "value": 469
                "Timestamp (Hour Ending)": "11\/23\/2022 1 a.m. EST",
                "value": 284
                "comment": "time series continues in this fashion"
        "resource": "Coal".
        "megawatt-hours": [
                "Timestamp (Hour Ending)": "11\/23\/2022 12 a.m. EST",
                "value": 469
                "Timestamp (Hour Ending)": "11\/23\/2022 1 a.m. EST",
                "value": 284
                "comment": "time series continues in this fashion"
```

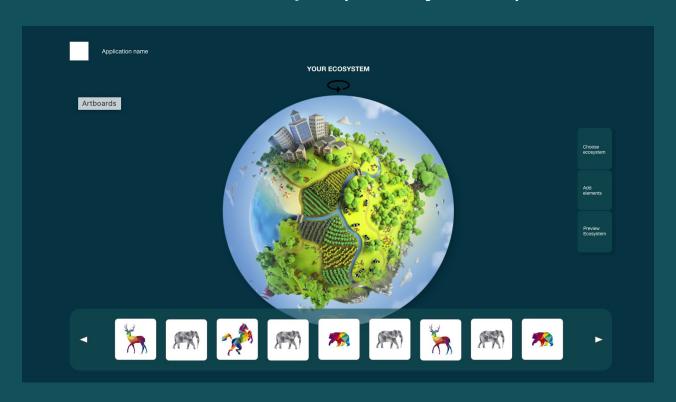
Database Design: User Data

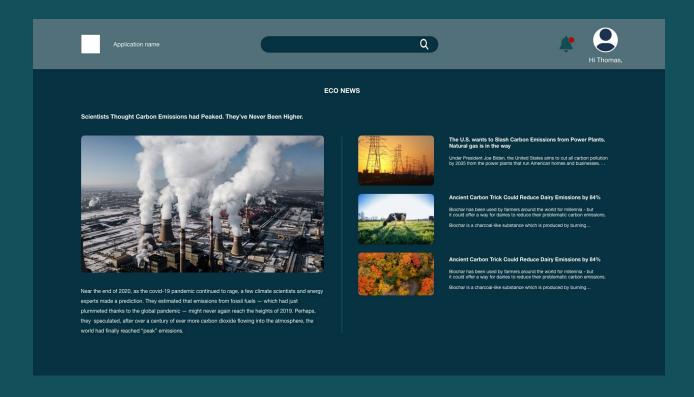
```
"user_id": "AGH801035",
"date": "2022-11-30",
"samples": [
        "timestamp": "12:59",
        "value": 167
                                                           Wattage readings sampled at regular
                                                                   intervals, grouped by date.
        "timestamp": "13:01",
        "value": 200
        "timestamp": "13:02",
        "value": 200
        "timestamp": "13:03",
        "value": 200
        "timestamp": "13:04",
        "value": 200
                                                     User progression, customization, and
        "timestamp": "13:05",
                                                     game state information.
        "value": 200
```

```
"user id": "AGH801035",
"zip": 90210.
"hardware profile": {
    "cpu": "12th Gen Intel Core 19-12900K",
    "gpu": "AMD Radeon RX 6900 XT",
    "motherboard": "ASUS TUF GAMING Z690-PLUS",
    "case fans": 5
"game_state": {
    "ecosystem": {
        "save_state": "037ae3153fa04b",
        "co2 ppm": 355.
        "active_species": [
                "name": "lion".
                "health": 78.
                "mood": "happy"
                "name": "tiger".
                "health": 34.
                "mood": "worried"
    "xp seasonal": 2533456.
    "season rank": 23,
    "active_bounties": ["87ff", "9cc0", "245d", "..."],
    "achievement score": 2229535960,
    "lifetime rank": 9
    "account_status": {
       "unlocks": ["lion", "tiger", "dandelion", "elephant", "..."],
       "completed_achievements": ["af90", "9980", "45f3", "..."]
"social_profile": {
    "user_name": "theBigCheesyBread2022",
    "email": "theBigCheesyBread2022@not-real.com",
    "profile text": "Not a real person.",
    "user_icon": "unicorn-image.png"
```


GUI Sitemap


UI Mockups (Main)


UI Mockups (Main)


UI Mockups (Main)

UI Mockups (Ecosystem)

UI Mockups (News)

Competition

	Does not require external hardware (e.g. smartplugs)	Collect full PC wattage estimates	Collects whole PC wattage estimates that adjust in real time	Gives guidance on when clean energy is being utilized	Focus on PC rigs	Use gamification to entice users to continue good habits
HWMonitor	V				V	
HWinfo64	V				V	
Outervision.co m	V	V			V	
Ohmplug		~	V	V		
Us	V	V	V	V	V	V

Indirect Competition

- CodeCarbon
 - o For software developers
 - o Open-source
- Green Algorithms
 - Shows estimated carbon footprint based on runtime of an algorithm and hardware info such as:
 - Type of core (CPU or GPU)
 - Number of cores
 - Model
 - Available memory
 - Platform (PC, cloud computing, or local server)
 - Geographic location

Customer Risks

C1: Difficult to engage users on environmental focus

Mitigation:

- Appeal to users with game-like experiences and reward loops
- Make free to use, leverage curiosity gap

INITIAL: HIGH -> MITIGATED: MEDIUM

C2: Difficult to keep users engaged – core functionality may not promote continued use Mitigation:

- Offer unlockable rewards for progression over time
- Structure rewards around repeatable achievement streaks
- Incorporate social features (leaderboards, achievement sharing, etc)

INITIAL: HIGH -> MITIGATED: MEDIUM

Customer Risk Matrix		Impact					
		Very Low	Low	Medium	High	Very High	
		1	2	3	4	5	
Probability	Very High	5			C2		
	High	4		C2		C1	
	Medium	3			C1		
	Low	2					
	Very Low	1					

Technical Risks

T1: Security threats to user data Mitigation:

- Follow industry best practices for encryption in transit and at rest
- Anonymize hardware configuration data stored remotely

INITIAL: HIGH -> MITIGATED: LOW

T2: Reliance on third-party APIs for data Mitigation:

- Use government sources
- Make methodology resilient to temporary service interruptions (e.g. bank historical data to feed projections)

INITIAL: MEDIUM -> MITIGATED: LOW

Technical Risk Matrix		Impact					
		Very Low	Low	Medium	High	Very High	
		1	2	3	4	5	
	Very High	5					
>-	High	4				T1	
Probability	Medium	3					
	Low	2		T1		T2	
	Very Low	1		T2			

Conclusion

- Enthusiast personal computing an area ripe for emissions cuts
- Individual behaviors make an impact, but too many barriers to action
- Software can help engage and educate users, providing personalized, meaningful calls to action

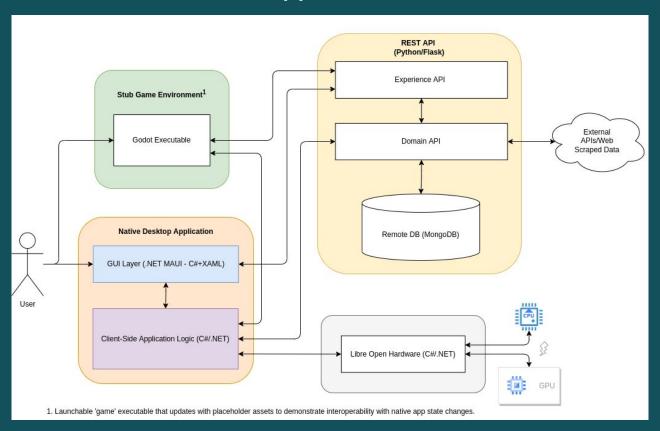
References

Brookings. (2022, August 23). *The social cost of carbon*. Brookings. Retrieved September 12, 2022, from https://www.brookings.edu/bpea-articles/the-social-cost-of-carbon/

Brown, M. T. (n.d.). California fuel mix changes in response to September heat wave. U.S. Energy Information Administration (EIA). Retrieved September 27, 2022, from https://www.eia.gov/todavinenergy/detail.php?id=53939

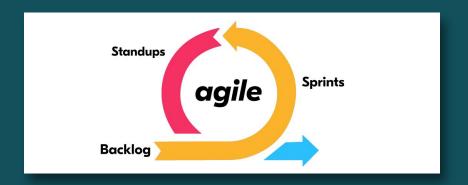
ESG Integration: Sustainable Investment Themes. BlackRock. (n.d.). Retrieved September 12, 2022, from https://www.blackrock.com/ch/individual/en/themes/sustainable-investing/esg-integration

Guardian News and Media. (2022, September 4). Rich nations owe reparations to countries facing climate disaster, says Pakistan minister. The Guardian. Retrieved September 12, 2022, from https://www.theguardian.com/world/2022/sep/04/pakistan-floods-reparations-climate-disaster


IPCC, 2018: Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3-24. https://doi.org/10.1017/9781009157940.001.

Power Consumption of Typical Household Appliances. (2022). Daft Logic. Retrieved October 26, 2022, from https://www.daftlogic.com/information-appliance-power-consumption.htm.

- Lawrence Berkeley National Laboratory. (n.d.). Cost & Dr. Greening the Beast. Retrieved September 27, 2022, from https://sites.google.com/site/greeningthebeast/cost-carbon?authuser=0
- Mills, E., Bourassa, N., Rainer, L., Mai, J., Shehabi, A., & Samp; Mills, N. (2019). Toward greener gaming: Estimating national energy use and energy efficiency potential. The Computer Games Journal, 8(3-4), 157–178. https://doi.org/10.1007/s40869-019-00084-2
- Mills, N., & Mills, E. (n.d.). Taming-the-energy-use-of-gaming-computers. Greening the Beast. Retrieved September 27, 2022, from https://sites.google.com/site/greeningthebeast/energy/taming-the-energy-use-of-gaming-computers?authuser=0
- Mooney, C., & Stevens, H. (2022, July 18). Analysis | the U.S. plan to avoid extreme climate change is running out of Time. The Washington Post. Retrieved September 27, 2022, from https://www.washingtonpost.com/climate-environment/2022/07/18/climate-change-manchin-math/
- NASA. (2022, September 26). Overview: Weather, Global Warming and climate change. NASA. Retrieved September 27, 2022, from https://climate.nasa.gov/global-warming-vs-climate-change/
- Real-time operating grid U.S. Energy Information Administration (EIA). Real-time Operating Grid U.S. Energy Information Administration (EIA). (n.d.). Retrieved September 12, 2022, from https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/US48
- Sims, D. (2022, July 13). AMD predicts gpus will reach 600-700W consumption by 2025. TechSpot. Retrieved December 6, 2022, from https://www.techspot.com/news/95274-amd-predicts-600-700W-gpus-2025.html
- United Nations. (n.d.). What is climate change? United Nations. Retrieved September 28, 2022, from https://www.un.org/en/climatechange/what-is-climate-change
- Wallace-Wells, D. (2022, September 7). Pakistan's vulnerability to disaster was through the roof, then came the floods. The New York Times. Retrieved September 12, 2022, from https://www.nytimes.com/2022/09/07/opinion/environment/pakistan-climate-change-floods.html


Appendix

Prototype MFCD

Development Model

- Divide work into manageable tasks
- Emphasize iteration on core functionality
- Quickly adapt to shifting project requirements

Prototype Agile Development Roadmap

1/9 - 1/20

- Setup environment / initial build configurations / documentation
- Setup database
- Begin implementing front-end functionality (navbar, essential components, etc.)

1/23 - 2/3

- Implement logic for retrieving grid data from third-party API
- Set up hardware monitoring logic
- Data mocking for GUI
- Iterate on GUI (site map, button hookups, display of some data)

2/6 - 2/17

- Implement logic for automating data storage
- Begin implementing domain API layer
- Begin implementing experience API layer
- Begin data visualization in GUI

2/20 - 3/3

- Begin adding gamification logic to experience and domain API layers (XP progression, unlocks)
- Add basic GUI components to display game state logic
- Iterate on GUI (tiling, feeds, graphs)

3/13 - 3/24

- Implement basic achievement system
- Add user profile/login system
- Interoperability between game progression and separate 'game world' executable
- Refinements across GUI and APIRSS feeds
- Noo recu

RWP vs. Prototype

Feature	RWP	Prototype	Prototype Actual
GUI layer	X	X	X
Hardware monitoring (GPU + CPU wattage)	X	X	X
Anonymized telemetry collection	X	partial	partial
Push Notifications	X	X	X
Regional electric grid monitoring	X	X	X
Remote storage of anonymized telemetry	X		
Electricity cost estimates	X	X	X
Environmental/gaming news feeds	X	Х	X
User profile	X	partial	partial
User login	Х		

RWP vs. Prototype (cont.)

Feature	RWP	Prototype	Prototype Actual
Gamification	X	partial	partial
Seasonal progression/"battle pass" - style unlocks	X	partial	partial
Fully interactive personal ecosystems	X	partial	partial
Achievement/bounty system	X	X	X
Virtual currency system	X		
In-app "storefront" for item unlocks/personalization	X	partial	partial
Social features	X		
Add friends	X		
Achievement leaderboard	X		
Visit other users' ecosystems	X		
Share achievements	X		

Legal Risks

L1: Challenges from hardware and software makers to application data/recommendations Mitigation:

- Base all recommendations on established methodologies for measuring carbon intensity
- Only use information from reliable, well-established third parties such as NASA, IPCC, EPA
- Publish methodologies to address any perceived bias

INITIAL: HIGH -> MITIGATED: MEDIUM

L2: Compromise of user data/privacy Mitigation:

- Do not collect personally identifiable information from users
- Integrate with third-party platforms for social features

INITIAL: HIGH -> MITIGATED: LOW

Legal Risk Matrix		Impact					
		Very Low	Low	Medium	High	Very High	
		1	2	3	4	5	
Probability	Very High	5				L1	
	High	4				L2	
	Medium	3		L1			
	Low	2		L2			
	Very Low	1					